The Planar k-Means Problem is NP-Hard

نویسندگان

  • Meena Mahajan
  • Prajakta Nimbhorkar
  • Kasturi R. Varadarajan
چکیده

In the k-means problem, we are given a finite set S of points in Rm, and integer k ≥ 1, and we want to find k points (centers) so as to minimize the sum of the square of the Euclidean distance of each point in S to its nearest center. We show that this well-known problem is NP-hard even for instances in the plane, answering an open question posed by Dasgupta [7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Study on a PTAS for Planar Dominating Set Problem

The dominating set problem is a core NP-hard problem in combinatorial optimization and graph theory, and has many important applications. Baker [JACM 41,1994] introduces a k-outer planar graph decomposition-based framework for designing polynomial time approximation scheme (PTAS) for a class of NP-hard problems in planar graphs. It is mentioned that the framework can be applied to obtain an O(2...

متن کامل

Simultaneous Embedding of Embedded Planar Graphs

Given k planar graphs G1,...,Gk, deciding whether they admit a simultaneous embedding with fixed edges (SEFE) and whether they admit a simultaneous geometric embedding (SGE) are NP-hard problems, for k ≥ 3 and for k ≥ 2, respectively. In this talk we consider the complexity of the SEFE problem and of the SGE problem when graphs G1,...,Gk have a fixed planar embedding. In sharp contrast with the...

متن کامل

The Parameterized Complexity of Graph Cyclability

The cyclability of a graph is the maximum integer k for which every k vertices lie on a cycle. The algorithmic version of the problem, given a graph G and a nonnegative integer k, decide whether the cyclability of G is at least k, is NP-hard. We study the parametrized complexity of this problem. We prove that this problem, parameterized by k, is co-W[1]-hard and that its does not admit a polyno...

متن کامل

Minimum Maximal Matching Is NP-Hard in Regular Bipartite Graphs

Yannakakis and Gavril showed in [10] that the problem of finding a maximal matching of minimum size (MMM for short), also called Minimum Edge Dominating Set, is NP-hard in bipartite graphs of maximum degree 3 or planar graphs of maximum degree 3. Horton and Kilakos extended this result to planar bipartite graphs and planar cubic graphs [6]. Here, we extend the result of Yannakakis and Gavril in...

متن کامل

Parallelizing Assignment Problem with DNA Strands

Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 442  شماره 

صفحات  -

تاریخ انتشار 2009